682 research outputs found

    Subjectively interpreted shape dimensions as privileged and orthogonal axes in mental shape space

    Get PDF
    The shape of an object is fundamental in object recognition but it is still an open issue to what extent shape differences are perceived analytically (i.e., by the dimensional structure of the shapes) or holistically (i.e., by the overall similarity of the shapes). The dimensional structure of a stimulus is available in a primary stage of processing for separable dimensions, although it can also be derived cognitively from a perceived stimulus consisting of integral dimensions. Contrary to most experimental paradigms, the present study asked participants explicitly to analyze shapes according to two dimensions. The dimensions of interest were aspect ratio and medial axis curvature, and a new procedure was used to measure the participants' interpretation of both dimensions (Part I, Experiment 1). The subjectively interpreted shape dimensions showed specific characteristics supporting the conclusion that they also constitute perceptual dimensions with objective behavioral characteristics (Part II): (1) the dimensions did not correlate in overall similarity measures (Experiment 2), (2) they were more separable in a speeded categorization task (Experiment 3), and (3) they were invariant across different complex 2-D shapes (Experiment 4). The implications of these findings for shape-based object processing are discussed

    Bistable Gestalts reduce activity in the whole of V1, not just the retinotopically predicted parts

    Get PDF
    Activity in the primary visual cortex reduces when certain stimuli can be perceptually organized as a unified Gestalt. This reduction could offer important insights into the nature of feedback computations within the human visual system; however, the properties of this response reduction have not yet been investigated in detail. Here we replicate this reduced V1 response, but find that the modulation in V1 (and V2) to the perceived organization of the input is not specific to the retinotopic location at which the sensory input from that stimulus is represented. Instead, we find a response modulation that is equally evident across the primary visual cortex. Thus in contradiction to some models of hierarchical predictive coding, the perception of an organized Gestalt causes a broad feedback effect that does not act specifically on the part of the retinotopic map representing the sensory input

    Perceptual saliency of points along the contour of everyday objects: A large-scale study

    Full text link

    Integrating Biological Motion: The Role of Grouping in the Perception of Point-Light Actions

    Get PDF
    The human visual system is highly sensitive to biological motion and manages to organize even a highly reduced point-light stimulus into a vivid percept of human action. The current study investigated to what extent the origin of this saliency of point-light displays is related to its intrinsic Gestalt qualities. In particular, we studied whether biological motion perception is facilitated when the elements can be grouped according to good continuation and similarity as Gestalt principles of perceptual organization. We found that both grouping principles enhanced biological motion perception but their effects differed when stimuli were inverted. These results provide evidence that Gestalt principles of good continuity and similarity also apply to more complex and dynamic meaningful stimuli

    The genesis of errors in drawing

    Get PDF
    The difficulty adults find in drawing objects or scenes from real life is puzzling, assuming that there are few gross individual differences in the phenomenology of visual scenes and in fine motor control in the neurologically healthy population. A review of research concerning the perceptual, motoric and memorial correlates of drawing ability was conducted in order to understand why most adults err when trying to produce faithful representations of objects and scenes. The findings reveal that accurate perception of the subject and of the drawing is at the heart of drawing proficiency, although not to the extent that drawing skill elicits fundamental changes in visual perception. Instead, the decisive role of representational decisions reveals the importance of appropriate segmentation of the visual scene and of the influence of pictorial schemas. This leads to the conclusion that domain-specific, flexible, top-down control of visual attention plays a critical role in development of skill in visual art and may also be a window into creative thinkin

    Appearance changes and error characteristics in crowding revealed by drawings

    Get PDF
    Peripheral vision is strongly limited by crowding: Targets that are easily recognized in isolation are unrecognizable when flanked by close-by objects. Crowding does not only impair target recognition but also changes appearance. Here we investigated appearance changes and errors in crowding by letting observers draw crowded stimuli. Observers drew stimuli presented at 6° and 12° eccentricity. Stimuli consisted of characters and letter-like symbols. Targets were presented with either a flanker on each side or in isolation. To characterize appearance changes and errors in crowding, we developed a scoring system that captured differences between the drawings and the stimuli. The resulting drawings revealed strong appearance changes under crowding. Importantly, our results reveal crowding errors that are usually not shown in standard crowding paradigms. We found high rates of element Omissions and element Truncations, indicating a central role of target "diminishment" in crowding. Furthermore, we show that a subset of the observed element Omissions and Additions was possibly caused by feature migration. Relatively high rates of position errors, in particular element Translations, reflected the often reported location uncertainty in crowding. Virtually no complete target-flanker substitutions were observed. We suggest a new classification system for errors in crowding, and propose drawing as a useful appearance-based method to investigate crowding

    A Conceptual Framework of Computations in Mid-Level Vision

    Get PDF
    The goal of visual processing is to extract information necessary for a variety of tasks, such as grasping objects, navigating in scenes, and recognizing them. While ultimately these tasks might be carried out by separate processing pathways, they nonetheless share a common root in the early and intermediate visual areas. What representations should these areas develop in order to facilitate all of these higher-level tasks? Several distinct ideas have received empirical support in the literature so far: (i) boundary feature detection, such as edge, corner, and curved segment extraction; (ii) second-order feature detection, such as the difference in orientation or phase; (iii) computation of summary statistics, that is, correlations across features. Here we provide a novel synthesis of these ideas into a single framework. We start by specifying the goal of mid-level processing as the construction of surface-based representations. To support it , we propose three basic computations: (i) computation of feature similarity across local neighborhoods; (ii) pooling of highly similar features, and (iii) inference of new, more complex features. These computations are carried out hierarchically over increasingly larger receptive fields and refined via recurrent processes when necessary
    • …
    corecore